$\begin{array}{c} {\rm Test~Kaleidoscope~Mathematics}\\ {\rm (WPMA18002)} \end{array}$

Statistics and Probability

Tuesday November 6, 14:00-15:00, MartiniPlaza L Springerlaan 2, 9727

- During the exam it is allowed to use a simple calculator such as the CASIO FX-82 or TI30.
- Give in all cases the reasoning leading to your answer.
- Provide each page with your name and student number.
- Use a sufficient number of decimals to make your computations unambiguously.
- This test consists of 6 exercises printed on 2 separate pages. We wish you lot's of success with its completion!
- 1. Pair of Dice. 10 A pair of dice is rolled 24 times. Compute the probability that at least one double 6 is obtained.
 - 2. Advanced circuit. 20 The circuit in the figure at the right hand side operates only if there is a path of functional devices from the top to the bottom. The probability that each device functions is as indicated. Assume that the probability that a device is functional does not depend on whether or not other devices are functional. What is the probability that the circuit operates?

- 3. Purchasing Microchips. $\boxed{20}$ An important component of your (desktop or laptop) personal computer (PC) is a microchip. The proportions of microchips that a certain PC manufacturer purchases from the suppliers S_1 , S_2 , and S_3 is .15, .30, and .55, respectively. It is known that the proportions of defective microchips produced by the three suppliers are 0.002, 0.005, and 0.001, respectively. If a single PC microchip failure is observed, which supplier is the most likely responsible?
- 4. Transition Matrix. Suppose we have the following probability transition matrix

$$P = \left[\begin{array}{ccc} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{array} \right]$$

for a three state Markov process

- (a) $\boxed{20}$ Determine the stationary distribution of the Markov chain. Hint: This is the distribution π , represented a row vector, such that $\pi P = \pi$.
- (b) 5 Is the corresponding Markov chain irreducible?
- 5. **General 2 by 2 Transition Matrix**. Consider a general two-state Markov chain with probability transition matrix

$$P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}, 0 < a < 1, 0 < b < 1.$$

(a) [20] Show that the *n*-step transition probability matrix P^n is given by

$$P^n = rac{1}{a+b} \left\{ \left[egin{array}{cc} b & a \ b & a \end{array}
ight] + (1-a-b)^n \left[egin{array}{cc} a & -a \ -b & b \end{array}
ight]
ight\}.$$

Hint: It is sufficient to show that this holds for P^1 and $P^{n+1} = P^n P$.

(b) $\boxed{5}$ Determine the limiting transition probability matrix, that is $\lim_{n\to\infty} P^n$.

End of test.